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1.   Introduction 

Laser velocimeters have found widespread use for localized measurements of fluid velocity. The 
most common system for this application is the so-called laser Doppler anemometer (LDA).1 We 
will consider such a system, not for fluid flow measurements, but for measuring the velocity of 
solid surfaces or objects large compared to any scale defined by the instrument.  In cases of solid 
objects, we use the term laser Doppler velocimetry (LDV) rather than anemometry. Light scatter- 
ing in these cases is often dominated by speckle phenomena.  The correlation function and the 
corresponding power spectrum are evaluated for different types of surface statistics and for dif- 
ferent parameters defining the operational mode2 of the instrument.  The present analysis is per- 
formed using the method of generalized ABCD matrices.3 

The case of fully developed speckle and a large collection aperture will give a power spectrum of 
the same type as encountered in laser Doppler anemometry with a large number of particles.4 

The shape of the spectrum is then exclusively determined by the geometry of the measuring sys- 
tem, the optical wavelength, and the velocity of the scattering object. This is in contrast to the sit- 
uation of partially developed speckle, or in cases of speckle decorrelation. In such cases, the 
spectral shape and the modulation depth of the signal will depend on both the spatial scales of the 
surface roughness and on out-of-plane motions.  The uncertainty of the estimated velocity has 
been investigated by Lading and Edwards5 in cases that correspond to fully developed speckle. 
Here, we will expand the results so that partially developed speckle and speckle decorrelation are 
also incorporated in the analysis. We assume that photon/electron noise is negligible. 

In Sec. 2, we derive general expressions for the auto covariance of the photodetector current in 
LDV systems and present closed-form analytical results for planar targets that have rough sur- 
faces such that the reflected optical phase exhibits partial spatial coherence. This is important for 
measurements on smoother surfaces that do not give rise to fully developed speckle. In Sec. 2.2, 
we obtain corresponding results for the case of fully developed speckle from curved surfaces, 
which is important for determining the angular velocity of rotating cylindrical shafts. In Sec. 3, 
error estimates are derived that indicate how well one can estimate the velocity of both planar and 
rotating targets in practice. Finally, in Sec. 4, a comparison with time-of-flight velocimetry on 
similar targets is given. 



2.    Time-Lagged Covariance for LDV Systems 

We consider the classical LDV system depicted in Figure 1. Two intersecting laser beams pro- 
duce on a surface an interference fringe pattern, which is imaged onto a square-law detector.  It is 
assumed here, as indicated in Figure 1, that the x-axis of object-plane coordinates is perpendicu- 
lar to the interference fringes, and that the z-axis is parallel to the optic-axis. It is also assumed 
that the spacing between fringes is small compared to the overall laser spot diameter (i.e., the 
number of observable fringes are much greater than unity).  Furthermore, the diffusing target is 
assumed to move with a constant velocity, v, that is nearly perpendicular to the z-axis. 

We seek to determine the time-lagged (auto) covariance of the resulting photocurrent from the 
detector centered at the corresponding geometrical-image point of the center of the target spot. 
This quantity is given by 

Q(x) = {i(t)i(t + x)> - (i(t))(i(t + x)), (2.1) 

where i(t) is the photocurrent obtained from the detector at time t (x is the time-lag), and angular 
brackets denote the ensemble average over the realizations of the statistics of the reflected light, 
assumed here to be stationary. 

transmitter 

fringe 
pattern 
(x-y plane) 

target 

receiver 

(     detector 
V. 

Figure 1.     Schematic of a Laser Doppler Velocimeter system. The transmitter 
and receiver are here shown as separate units. Often they are com- 
bined and have a common optical axis. 



The instantaneous photocurrent is given by6 

, = «[ m = a\dpW(v)I(fi,t), (2.2) 

where p is a vector in the image plane, /(p,f) is the corresponding image-plane intensity distribu- 
tion, W(p) is the receiver-aperture weighting function, and a is a conversion factor (i.e., power to 
current) given by 

oc = Ü1 
hv' 

(2.3) 

where q is the electronic charge, r\ is the detector quantum efficiency, v is the optical frequency, 
and h is Planck's constant. Here we model the (real and positive) receiver aperture weighting 
function by a circularly symmetric Gaussian-shaped function of the form 

W(p) = exp 2p< (2.4) 

where oa is the l/e  radius of the receiver aperture weighting function. 

The instantaneous intensity function can be written as 

I(p,t) = \jdrU0(r,t)G(r,v) (2.5) 

where we assume that the detector integration time is long compared with the coherence time of 
the incident laser light, but short compared with the characteristic speckle fluctuation time; U0(r,t) 
is the reflected optical field in the object plane (assumed here to be in the rx-ry plane); and G(r,p) 
is the Green's function for the circularly symmetric system, given (to within an unimportant 
phase factor) by 

G(r,p) = - 
ik 

2KB 
exp 

ik 
-i|(D/-2r-P + ^2) (2.6) 



where A,B, and D are the ray-matrix components of the system.7 For the imaging system 
depicted in Figure 2, these quantities are given by 

A = -f2/f\=-m, (2.7) 

B = - 2ifif2 

ka2 
(2.8) 

D = -fl/f2=-l/m, (2.9) 

where a is the l/e   radius of the imaging system's limiting (Gaussian) aperture, k is the optical 
wave number,// and/2 are indicated in Figure 2, and m is the geometrical magnification. 
Substituting Eqs. (2.7)-(2.9) into Eq. (2.6) yields 

Figure 2.    Optical diagram for a LDV system. The limiting aperture of l/e 
radius 0"is positioned in the Fourier plane. 



G(r, p) = (-ik 12%B) exp (x + rr 
to 

(2.10) 

where 

CO = M 
ko 

(2.11) 

and 

x=P. 
m 

(2.12) 

Equation (2.10) expresses the Green's function in terms of object-space variables w and x and is 
convenient to employ in the ensuing calculations. 

2.1 Planar Targets 
We now assume that the reflected laser interference fringe pattern, which is fixed in space, results 
from reflection off a partially coherent diffuse planar reflector moving with uniform velocity 
parallel to the rx-axis. In practice, it is a good to assume that the detector aperture is larger than 
the imaged spot, and, hence, we set W(p) = 1 in this section. We assume that the amplitude of the 
reflection coefficient is constant, while the phase exhibits partial spatial coherence.  Specifically, 
we model the reflected optical field for a planar target as 

t/o(r,0 = I/,-(r)V(r,0, (2.13) 

where £//(r) is the incident field.  The mean (diffuse) reflected interference fringe intensity is 
given by 

/0(r) = l^-dOl2 = ^%cos2(Kxrx /2)exp 
2rA 

(2.14) 

where P0 is the reflected power, as is the Me  Gaussian spot radius, and 

2TT 
(2.15) 



where A, the fringe period, satisfies the condition that A < os (i.e., many fringes are contained 
within the reflected spot). As an illustrative example, we plot in Figure 3 the reflected intensity 
distribution for the case where A = as/5. 

We further assume that |\|/(r, t)\ = p, where p is the magnitude of the reflection coefficient.  Here 
we assume that p is constant and set it equal to unity in the following. As discussed in Appendix 
A, the correlation function By =H\y(r],0\|/*(r2,Oy is modeled by a Gaussian function given by 

By(rhr2) = 
4% 

K*rc 

-exp 
2(i]-r2y 

>T\ 
(2.16) 

where rc is a measure of the phase correlation length of the target's surface. Here, we assume 
diffuse reflection only.  In particular, we assume that there is no specular component in the 
reflected field (this is equivalent to assuming that the reflected optical phase variance al »1 (see 
Appendix A).  Hence, the reflected field obeys circular complex Gaussian statistics.8 In 
Appendix B, we present general expressions for the covariance when the magnitude of the reflec- 
tion coefficient varies spatially. In the limit of complete spatial incoherence (i.e., rc —> 0), we 
have A,,, —> (4K/ k )8(rj -r2), where 8(r) is the Dirac delta-function. That is, for fully developed 
speckle, the reflected optical phase function is completely random and delta correlated.  For a 
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Figure 3. The reflected intensity distribution for A = o"s/5. 



diffuser moving with a constant velocity, v, we assume that the time evolution of the reflected 
phase is given by 

\\r(r,t+x) = y(r-vi,t) (2. 17) 

That is, the reflected phase at any position in a coordinate system moving along with the diffuser 
does not change in time (i.e., a Taylor's hypothesis). 

On substituting Eqs. (2.2) and (2.5) into Eq. (2.1), we obtain from the first term on the right- 
hand side of Eq. (2.1) a term of the form 

(y0(rht)U*0(r2,t + i)U*0(T2,t)U0(Tht + x)), (2.18) 

where ri, rj, r2, and r2 are integration variables that result when the substitutions alluded to above 
are carried out. In order to perform the statistical average over the four indicated reflected fields, 
we invoke the circular complex Gaussian statistics of the underlying speckle fields to write the 
average implied by expression (2.18) as 

{u0(rht)U;(r2,t)){u;(r2,t + ^U0(rht + x)) (2.19) 

+(y0(r1j)U;(T2a + x))(ul(r2,t)U0(rht + x)). 

From the discussion preceding Eq. (2.17), it is easily seen that the first term on the right-hand 
side of Eq. (2.19) will yield an expression that is identically canceled by the second term on the 
right side of Eq. (2.1). As a result, we obtain 

QCc) = jdPlW(Pl)j dp2W(p2)K(phP2;x), (2.20) 

where 



K(PhP2^)= I ^rl| dr2] d*l\ dr"2 

xG(r1,p1)G*(r2,p2)G(rbp2)G*(r2,P2) 

x(uo(rht)U*0(r2,t + x)) 

x(u*0(r2,t)U0(rht + %)). 

(2.21) 

By employing Eqs. (2.13)-(2.17), we obtain that 

^(Pl»P2 51) = J <*l^i (rl) G(rl. Pi)J dr2Ui (r2 )G* (r2. P2 ) Bv (rl. r2% ) (2.22) 

where 

r2z=r2+\x. (2.23) 

Substituting Eqs. (2.10), (2.14), (2.16), and (2.22) into Eq. (2.20) yields an integral whose inte- 
grand contains multiplicative factors of the form cos(Kxrix)cos(Kxr2xx), which when expanded, 
produce additive terms of the form exp[±iKx(rlx + r2x + VXT)] (the direct terms), and 
exp[±iKJcvx'c] (the cross terms). It can be shown that the direct terms vield, after performing the 
integrations over object space, multiplicative factors of the form exp -c(Kxcf) |, where c is a 
dimensionless constant of the order unity. Because we assume that there are many fringes con- 
tained within the reflected spot, KXOS = 2%cs/A» 1 and hence, the contribution of the direct 
terms to the covariance are negligible. On the other hand, it can be shown that because the cross 
terms are independent of object space coordinates they yield an overall multiplicative factor to 
the covariance that equals cos (K;CVXX/2) = [1 + COS(KXVXT)]/2. 

The resulting integration's have been performed using the Mathematica computer program,9 with 
the final result that 

w4(1+T'V- (VT) 2   A 

<*s+rc j 
(2.24) 

where the mean current, (i) = (i(tj) = (i(t + x)), is given by 



(i) = jdpW(p)jdrljdT2Bxv{rhT2)Ui{Tl)u!(r2)G{rhp)G*{r2,p) 

( «\2 

= ccft 
2/i 

1 

1      rc 

(2.25) 

and N, the number of independent modes that pass through the optical system to the measure- 
ment aperture, is given by 

1 + ~2 
JV = ^ £ 

r2' 
l + -£- 

1+^T + ^r 

(2.26) 

CO 

Equation (2.24) expresses the LDV covariance of photocurrent as a function of the phase corre- 
lation scale, rc, for a planar diffuse reflecting target. To the best of our knowledge, this is the first 
analytical model that includes partial coherence of the target for LDV systems. 

Examination of Eq. (2.24) reveals that the effect of partial coherence of the target's surface is to 
increase the effective size of the measurement (target) area. As a result, it can be shown that, for a 
sufficiently large signal-to-noise ratio, the number of observable oscillations in Q(x) increases 
with increasing rc, hence, increasing the sensitivity of the system. In the limit rc -> 0 (i.e., fully 
developed speckle), the results expressed in Eqs. (2.24)-(2.26) are identical to that obtained by 
Lading and Edwards.     On the other hand, for complete coherent reflection (rc -» «>), examina- 
tion of Eq. (2.25) yields that (?)->0, as expected physically. This occurs because, for complete 
coherent reflection (i.e., specular reflection), there is no diffuse component of the photodetector 
current. Thus, for specular reflection, the LDV covariance of photocurrent is identically zero. 

2.2 Rotating Targets 
In this section, we consider, as indicated in Figure 4, a rotating shaft of radius R that has a surface 
that reflects light with complete incoherence (i.e., rc -» 0). In all cases of interest, the maximum 
time-lag, T, and rotational velocity are sufficiently small such that the angular separation between 
a point on the surface at time t, and the corresponding point at time t + 1 is much less than unity. 
This is equivalent to the condition that the reflected spot size is small compared to the radius of 
the shaft (i.e., os/R «1), a condition that is always met in practice. For completeness, as discussed 
in the Introduction, we consider a finite receiver aperture, whose weighting function is given by 
Eq. (2.4). We than assume that the angular velocity of the shaft is parallel to the ry-axis. 
Assuming that the laser beams are normally incident on the target, the reflected optical field, 
£/;(r) in the initial plane (i.e., z = 0) at the coordinate {rx,ry,0} contains the multiplicative factor 
e\Tp(2ikbrx j,10 where 

10 
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Figure 4. Measurement geometry for a rotating cylindrical shaft. 

2/? 
(2.27) 

That is, Eq (2.13) becomes: 

f/o(r,0 = f/,(r)exp(2^rx
2)\)/(r,0. (2.28) 

In this case, it can be shown by methods similar to that in obtaining Eq. (2.24) that the covariance 
of the photocurrent, in the presence of a rotating shaft and a finite detector measurement aper- 
ture, 0a is given by 

11 



' N 

^1 + COS(KXö)0äI)
N 

2 
exp ((OoRiY (2.29) 

where w0 is the magnitude of the angular velocity of the rotating shaft, 

1       1 1 (kos(ö/R) + - 
A2    a2    G>

2
+G

2
      G? + CD

2 
(2.30) 

(i) = aP0 
^ V 

v2/iy 1 + h2/*2)' (2.31) 

f    „2 , _2     ^/2 

iV = ^c 
CO  +<x o 

2 , Jl ((os/mr+a% \.y™s 

(2.32) 

iVc = l + [^|  =1 + 
2        Otoa.f 

2/i 
(2.33) 

0)^ = (möj)2 + (t)' (2.34) 

and 

m 
(2.35) 

The quantities AT, Nc, wSt and s0 are, respectively, the number of independent (optical) modes that 
passes through the measurement aperture to the detector plane, the corresponding number of 
modes captured by the optical system, the lie  radius of the jmage of the reflected spot, and the 
detector aperture radius referred to object-space coordinates.   Note, in contrast to the planar 
case, interference effects due to the presence of the curved target cause a reduction in the tempo- 
ral width of the covariance. Physically, this arises due to destructive interference, which reduces 
the effective imaged spot size and, hence, a shorter corresponding transit time is obtained. 

For detector apertures that are large compared with the size of the imaged spot, Eq. (2.29) 
becomes 

12 



_ (i)2 (1 + COS(KXG}0R%) 

' AL 
exp Op^C 

\2 

's    J 
1+ 

(kas(o/Ry 

1 + 
CO 

(Ca -> -), (2.36) 

where (i) and Afc are given by Eqs. (2.31) (with oa -» °°) and (2.33), respectively. 

As indicated above, the presence of the curved target causes a reduction in the temporal width of 
the covariance.  For simplicity, consider the case of large detector apertures, which applies for 
almost all systems of practical concern. Then, examination of Eq. (2.36) reveals that the effects 
of rotation become significant for R < Rmin, where Rmin is determined from the condition that 

(faOOj/^ni,,) 
■>1. 

1 + 
CO 

(2.37) 

For example, for w « ss, (i.e., A^» 1) Eq. (2.37) yields that 

Rmin=k<acs, (2.38) 

while for co » os, (i.e., A'' = 1 ) we obtain that 

^min ~ kOs. (2.39) 

13 



3.   Error Estimates 

Of primary concern in LDV measurements is the determination of the velocity of a target. 
Because the current covariance is an oscillating function of the time-lag T, velocity information is 
difficult to obtain directly from the covariance. However, the corresponding power spectrum is a 
peaked function, from which velocity information can be extracted directly from knowledge of 
the location of the peak.  Therefore, consider the autospectral density function of the covariance 
of photodetector current, defined as 

S(f)= jqWe-^dx, (3.1) 

where C[{%) is given by Eqs. (2.24) and (2.29), and/denotes temporal frequency.   Substituting 
either Eq. (2.24) or Eq. (2.29) into Eq. (3.1) yields a spectrum in the region of positive frequen- 
cies, near the peak, of the form (excluding the low-frequency region, i.e., the pedestal term) 

5(/)=2^feeXP 
(f-fof 

A/2 
(3.2) 

where 

fv r IA      (planar targets) X    , , (3.3) 
(0oR IA    (rotating targets) 

and 

A/ = 
v / rc^/o2 + rc

2     (planar targets) 

(0oR/%A (rotating targets) 

In general, in contrast to planar targets, the effects of curved targets results in an increase in the 
spectral width, 4f[see Eq. (2.30)]. Note, in particular, that if one knew the precise location of the 
peak, f0, the corresponding velocity information follows directly from Eq. (3.3). We next present 
expressions that indicate how well one can estimate the exact location of the peak of the power 
spectrum in practice. 

For f * 0, the variance of the estimate of the autospectral density, S(f), is given by1! 

15 



Var[S(f)} = ((kf)-{S(fJff 

s2(f) 
BJ ' 

(3.5) 

where T is the finite record length, and Be is the resolution bandwidth centered at frequency / 
(see Sec. 8.5 of Ref. 11). The results given in Eq. (3.5) are based on the assumption that the fil- 
tered data behave like bandwidth-limited Gaussian white noise. This is an excellent assumption in 
practice when the filter resolution bandwidth, Be , is sufficiently small. The central limit theorem 
applies to indicate that the filtered data should be more Gaussian than the input data, and the fact 
that Be is small means that the output spectrum must be essentially constant. 

In order to obtain an estimate for the error in determining the precise location of the peak of 
autospectral density function, we expand S(f) near/ = /0, which yields the estimate 

S(f) = 1- (f-foY 
A/2 S(fo)- (3.6) 

Thus, in terms of estimates of /near f0, VaAs(f)\ is given by 

Var\ 
AT 

(3.7) 

Assume next that these values of/are such that/follows a normal distribution with (/) = f0, and 
variance ojr.  Then, the fourth moment in Eq. (3.7) is equal to 3cf , from which it follows that 
the variance of the estimate of the location of the peak in the autospectral density function is 
given by 

02
fo=Jm/Sf2Var[kf0)] 

|l/2 / 
IS{f0). (3.8) 

Substituting Eq. (3.2) into Eq. (3.8) yields that 

c} = 
Jo 

Af2 

JiBJ 
(3.9) 

On the basis of the normal distribution and Eq. (3.9), one can obtain a confidence interval for the 
unknown true value of f0) in terms of system parameters, based on any single estimate, /. Thus, 
for example, the 95% confidence interval for determining the location of the peak of the spec- 
trum is f = f0 ±2Cf . 

Jo 

16 



4.   Discussion and Conclusion 

Based on the results obtained in this report for LDV systems and the corresponding results 
obtained in a previous article   treating the Laser-Time-of Flight velocimeter (LTV), a comparison 
between the two systems can be made. We consider both results relating to measurements on tar- 
gets giving rise to fully developed speckle fields. To compare the two systems, the transmitters 
for the two systems are assumed to have the same numerical apertures, which make the number of 
fringes in the LDV system, Nf, equal to the relative distance between the focused spots divided by 
the spot radius in the LTV system. Further, the numerical apertures of the detector systems are 
assumed identical. The comparison is made with respect to the error estimates, the minimum 
shaft radius, and the effect of velocity misalignment. 

Equation 57 of Ref. 2 gives the variance of the estimated value of the location of the peak of the 
cross covariance, which can be easily converted to give the normalized variance for estimating the 
velocity in a LTV system: 

s2 1 
(4.1) 

v2     NJjBj' 

where the bandwidth for the LTV signal is determined by the effective transit time through one of 
the illuminated spots, i.e., 

Be = v 
r A

1/2 

_L _L 
~2 + „2 

\°s     °>   J 
(4.2) 

for the case of large detector apertures.  The corresponding normalized variance for the LDV 
system, as obtained from Eq. (3.9), is 

C-^°c    , ' 1^1. (4.3) 
v2     NJJBJ 

where the spectral bandwidth, for the case of large detector apertures, is also given by Eq. (4.2). 
Comparing the functional dependence of the normalized variances, Eqs. (4.1) and (4.3), reveals 
that we arrive at identical expressions if the velocity in the LDV system is perpendicular to the 
fringes. Note that the bandwidth, Be, is different for the two systems. The LTV system has a 
bandwidth that is given by the transit time through one of the focused spots, whereas the LDV 
system has a corresponding bandwidth determined by the transit time (which is a factor Nf larger) 
through the entire fringe pattern. Comparing Eqs. (4.1) and (4.3), it follows that the variance of 
the estimated velocity is, therefore, a factor Nfl/2 smaller for the LTV system in comparison to 
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the LDV system. We note that neither Eq. (4.1) or (4.3) represents fundamental limits,5 but even 
taking the detailed signal statistics into consideration the conclusion appears to be valid. 

Furthermore, the number of collected modes, Eq. (2.33), is determined by the spot size for the 
LTV system and by the size of the fringe pattern for the LDV system. Identical conditions for 
the detector and transmitter set-ups, therefore, result in a higher normalized time-lagged auto 
covariance for the LTV system. In these respects, the LTV system is superior to the LDV system. 
A decrease in resolution is expected for variations from optimum alignment for the LDV system, 
whereas the basic LTV system with circular spots in the measuring volume will lose signal in this 
case. 

The minimum radii of curvature for the two systems are summarized in Table 1.  Identical per- 
formance is obtained if the distance between the spots in the LTV system equals the spot size in 
the LDV system. Both LDV and LTV systems will suffer a decrease in the magnitude of the 
cross covariance and auto covariance as the target diameter decreases, while the temporal widths 
of the respective covariances increase correspondingly with decreasing values of the spot size. 

Finite spatial coherence of the reflecting target has been considered for the LDV system only, 
showing an apparent increase [see Eq. (2.24)] of the measuring volume, yielding  a decrease in 
the variance of the estimated velocity. Further, this is accompanied by a decrease in the number 
of optical modes, N, and therefore an increase in the normalized auto covariance and a slight 
decrease in the magnitude of the detected signal. Targets giving rise to fully developed speckle 
will, for both systems, yield normalized covariance functions that are inversely proportional to the 
number of modes collected by the receiver. 

The method of ABCD matrices has been applied to the analysis of LDV systems in conjunction 
with targets having correlated surface structures. This method is based on the assumption that all 
apertures are of Gaussian shape.  The resulting Huygens-Fresnel integrals can then be solved ana- 
lytically, whereby later mathematical approximations can be avoided. The auto covariance and 
power spectrum have been obtained in closed analytical form, which provides a tool for paramet- 
ric optimization of the optical system. System performance has been analyzed in that the vari- 
ance of the estimated velocity has been obtained in terms relating to the optical system and the 
target surface reflectance characteristics. Further, measurement restrictions for cylindrical rotat- 
ing targets have been obtained, and the results have been compared with previous results for time- 
of flight velocimetry. 

Table 1.    Minimum Radii of Curvature for Measurement on Cylindrical Surfaces in 
the Two Limiting Cases for LDV and LTV 

Minimum Radius of Curvature Time of Flight Velocimetry Laser-Doppler Velocimetry 

a><os 

CO>ffs 

2kda 

2kdas 

kax7s 

ka? 
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Appendix A 

In this Appendix, we present a physical model that relates the complex reflection coefficient to 
the surface height fluctuations. Following Goodman,  we adopt an elementary relation that leads 
to tractable results, which is often used in analysis and is reasonably accurate if the surface slopes 
are small.  In particular, we express the reflection coefficient as [see Eq. (2.162) and Fig. 2.23 of 
Ref.8] 

i|/(r) = |\Kr)|exp[«|)(r)] (A-l) 

where, 

(|>(r) = Ä:(l + cosß)A(r), (A-2) 

h(r) is the surface fluctuation in surface heights, ß is the angle between the direction of propaga- 
tion of the laser beams and the normal to the surface, and, for simplicity in notation, we have sup- 
pressed the explicit dependence on time. Because it is assumed that Mr) is a zero-mean wide- 
sense stationary random process, so too is the phase angle 0(r). If Gh   represents the variance of 
h, then the variance of § is given by 

ol=[ka+cos$)ohf. (A-3) 

Assuming that |xj/(r)| = 1, and that the surface height fluctuations are a Gaussian random process, 
the correlation function JBv(ri,r2) = (\)/(r1)\j/*(r2)y can be expressed as 

Bv (Xi, r2) = (expf i((])(r,) - <j>(r2 ))|) 
r , (A-4) 

= exp[-0^(l-fcA(r,,r2))J, 

where bh is the normalized correlation function of the surface height fluctuations. 

Equation (A-4) provides us with a specific relationship between the correlation properties of the 
reflection coefficient and the correlation properties of the reflecting surface.  To proceed further, 
we assume that the statistics of the reflecting surface are stationary and that the normalized corre- 
lation function of the surface heights is also of Gaussian form, 

bh(r) = exp -2 
fr* 

VhJ 
(A-5) 
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where r = [rj -r2|, and r^ is the lateral coherence length of the surface heights fluctuations. Hence, 
the correlation function By/ becomes 

5v(r) = exp -ai\l-e -2(r/rhY (A-6) 

2. 
For almost all cases of practical concern, the phase variance G^   is greater than unity and hence, 
By/ can be expressed as 

ßv(r) = exp 
( 

-2 
\rc 

(A-7) 

where 

_ rh _ *h 
G^      k(l + COS$)Gh 

(A-8) 

is the phase lateral coherence length. 

For mathematical convenience, we want to use a correlation function that becomes a Dirac delta 
function in the limit of complete incoherent reflection. That is, for fully developed speckle, we 
require that ZL^rj,^) = abfa -r2),, where a is a constant that is independent of the optical sys- 
tem.  The quantity a can be determined from the requirement that the mean reflected radiance of 
fully developed speckle is given by I0pA/n, where I0 is the incident intensity, p is the reflection 
coefficient, and A is the area of the illuminated spot (i.e., Lambert's law). Hence, it can be shown 
that a = 4n/k . Based on these considerations and Eq. (A-7), we use a correlation function for 
partial coherent diffuse reflection given by 

By(rhr2)- 
r4% 

Kk2J 

^r 
Kn

rc 
-exp 

2(r1-r2)^ 
(A-9) 

Note, in the limit rc -» 0, we have from Eq. (A-9) that By -> (47i/£2)S(ri -r2). 
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Appendix B 

In this Appendix, we now assume that the magnitude of the reflection coefficient exhibits deter- 
ministic spatial variations over dimensions of the reflected laser spot. Specifically, we assume that 

\y(r,t)\ = ^p(r,t), (B-l) 

where p(r,t) is the magnitude of the reflection coefficient. Then, following similar arguments that 
led to Eq. (2.22), it is straightforward to show that Eq. (2.22) becomes 

^(Pl>P2^) = |J^iP(r1)
1/2^(r1)G(r1,p1)Jrfr2p(r2)

1/2^*(r2)G*(r2,p2)Bv(r1)r2T) (B-2) 

For the special case of fully developed speckle (i.e., By(ri,r2x) = \4%/k j8(r1 -r2 - vx)), Eq. (B- 
2) becomes 

Ä-(Pl,p2;T) = te f dr^p(T)p(rx) 11^)17*(rT)G(r,Pl)G*(r„p2) (B-3) 

where 

rx = r + vt. (B-4) 
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TECHNOLOGY OPERATIONS 

The Aerospace Corporation functions as an "architect-engineer" for national security 
programs, specializing in advanced military space systems. The Corporation's Technology 
Operations supports the effective and timely development and operation of national security 
systems through scientific research and the application of advanced technology. Vital to the 
success of the Corporation is the technical staffs wide-ranging expertise and its ability to stay 
abreast of new technological developments and program support issues associated with rapidly 
evolving space systems. Contributing capabilities are provided by these individual 
Technology Centers: 

Electronics Technology Center: Microelectronics, VLSI reliability, failure 
analysis, solid-state device physics, compound semiconductors, radiation effects, 
infrared and CCD detector devices, Micro-Electro-Mechanical Systems (MEMS), and 
data storage and display technologies; lasers and electro-optics, solid state laser design, 
micro-optics, optical communications, and fiber optic sensors; atomic frequency 
standards, applied laser spectroscopy, laser chemistry, atmospheric propagation and 
beam control, LIDAR/LADAR remote sensing; solar cell and array testing and 
evaluation, battery electrochemistry, battery testing and evaluation. 

Mechanics and Materials Technology Center: Evaluation and 
characterization of new materials: metals, alloys, ceramics, polymers and composites; 
development and analysis of advanced materials processing and deposition techniques; 
nondestructive evaluation, component failure analysis and reliability; fracture 
mechanics and stress corrosion; analysis and evaluation of materials at cryogenic and 
elevated temperatures; launch vehicle fluid mechanics, heat transfer and flight 
dynamics; aerothermodynamics; chemical and electric propulsion; environmental 
chemistry; combustion processes; spacecraft structural mechanics, space environment 
effects on materials, hardening and vulnerability assessment; contamination, thermal 
and structural control; lubrication and surface phenomena; microengineering 
technology and microinstrument development 

Space and Environment Technology Center: Magnetospheric, auroral and 
cosmic ray physics, wave-particle interactions, magnetospheric plasma waves; 
atmospheric and ionospheric physics, density and composition of the upper 
atmosphere, remote sensing using atmospheric radiation; solar physics, infrared 
astronomy, infrared signature analysis; effects of solar activity, magnetic storms and 
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere; effects 
of electromagnetic and paniculate radiations on space systems; space instrumentation; 
propellant chemistry, chemical dynamics, environmental chemistry, trace detection; 
atmospheric chemical reactions, atmospheric optics, light scattering, state-specific 
chemical reactions and radiative signatures of missile plumes, and sensor out-of-field- 
of-view rejection. 


